Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This study presents a comprehensive benchmarking analysis of the Arm-based AmpereOne A192-32X CPU, a high-performance but low power processor designed for cloud-native workloads characterized by high core occupancy, imperfectly-vectorized or even pure scalar software, limited need for high floating-point performance, and, increasingly, AI inference. These traits also characterize much of academic research computing. Hence a thorough investigation of this novel CPU seeking to characterize its strengths and weaknesses on academic workloads, including traditional HPC codes for which it was not designed, will shed light on its relevance in a research setting. We report comparative analyses with contemporary CPUs (Intel Sapphire Rapids, AMD EPYC, NVIDIA Grace-Grace) and illustrate AmpereOne’s architectural advantages in handling parallel workloads and optimizing power consumption. The CPUs are compared in terms of performance and power consumption using a wide range of applications covering different workloads and disciplines.more » « lessFree, publicly-accessible full text available February 19, 2026
- 
            Complex tasks like hunting moving prey in an unpredictable environment require high levels of motor and sensory integration. An animal needs to detect and track suitable prey objects, measure their distance and orientation relative to its own position, and finally produce the correct motor output to approach and capture the prey. In the insect brain, the central complex (CX) is one target area where integration is likely to take place. In this study, we performed extracellular multi-unit recordings on the CX of freely hunting praying mantises (Tenodera sinensis). Initially, we recorded the neural activity of freely moving mantises as they hunted live prey. The recordings showed activity in cells that either reflected the mantis's own movements or the actions of a prey individual, which the mantises focused on. In the latter case, the activity increased as the prey moved and decreased when it stopped. Interestingly, cells ignored the movement of the other prey than the one to which the mantis attended. To obtain quantitative data, we generated simulated prey targets presented on an LCD screen positioned below the clear floor of the arena. The simulated target oscillated back and forth at various angles and distances. We identified populations of cells whose activity patterns were strongly linked to the appearance, movement, and relative position of the virtual prey. We refer to these as sensory responses. We also found cells whose activity preceded orientation movement toward the prey. We call these motor responses. Some cells showed both sensory and motor properties. Stimulation through tetrodes in some of the preparations could also generate similar movements. These results suggest the crucial importance of the CX to prey-capture behavior in predatory insects like the praying mantis and, hence, further emphasize its role in behaviorally and ecologically relevant contexts.more » « less
- 
            Abstract The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces1. Whereas traditional combinatorial deposition methods can generate material libraries2,3, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid–liquid or solid–solid phases4–6. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.more » « less
- 
            Quaternary chalcogenides continue to be of interest due to the variety of physical properties they possess, as well as their potential for different applications of interest. Investigations on materials with the sphalerite crystal structure have only recently begun. In this study we have synthesized sulfur-based sphalerite quaternary chalcogenides, including off-stoichiometric compositions, and investigated the temperature-dependent electronic, thermal and structural properties of these materials. Insulating to semiconducting transport is observed with stoichiometric variation, and analyses of heat capacity and thermal expansion revealed lattice anharmonicity that contributes to the low thermal conductivity these materials possess. We include similar analyses for CuZn 2 InSe 4 and compare these sphalerite quaternary chalcogenides to that of zinc blende binaries in order to fully understand the origin of the low thermal conductivity these quaternary chalcogenides possess.more » « less
- 
            Meditation is an umbrella term for a number of mental training practices designed to improve the monitoring and regulation of attention and emotion. Some forms of meditation are now being used for clinical intervention. To accompany the increased clinical interest in meditation, research investigating the neural basis of these practices is needed. A central hypothesis of contemplative neuroscience is that meditative states, which are unique on a phenomenological level, differ on a neurophysiological level. To identify the electrophysiological correlates of meditation practice, the electrical brain activity of highly skilled meditators engaging in one of six meditation styles (shamatha, vipassana, zazen, dzogchen, tonglen, and visualization) was recorded. A mind-wandering task served as a control. Lempel–Ziv complexity showed differences in nonlinear brain dynamics (entropy) during meditation compared with mind wandering, suggesting that meditation, regardless of practice, affects neural complexity. In contrast, there were no differences in power spectra at six different frequency bands, likely due to the fact that participants engaged in different meditation practices. Finally, exploratory analyses suggest neurological differences among meditation practices. These findings highlight the importance of studying the electroencephalography (EEG) correlates of different meditative practices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
